Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Netw Neurosci ; 5(2): 337-357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34189368

RESUMO

Identifying the nodes able to drive the state of a network is crucial to understand, and eventually control, biological systems. Despite recent advances, such identification remains difficult because of the huge number of equivalent controllable configurations, even in relatively simple networks. Based on the evidence that in many applications it is essential to test the ability of individual nodes to control a specific target subset, we develop a fast and principled method to identify controllable driver-target configurations in sparse and directed networks. We demonstrate our approach on simulated networks and experimental gene networks to characterize macrophage dysregulation in human subjects with multiple sclerosis.

2.
Mol Neurobiol ; 58(2): 470-482, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32974731

RESUMO

Multiple sclerosis (MS) is a neuroinflammatory disease whose pathogenesis remains unclear. Lysophosphatidic acid (LPA) is an endogenous phospholipid involved in multiple immune cell functions and dysregulated in MS. Its receptor LPA1 is expressed in macrophages and regulates their activation, which is of interest due to the role of macrophage activation in MS in both destruction and repair. In this study, we studied the genetic deletion and pharmaceutical inhibition of LPA1 in the mouse MS model, experimental autoimmune encephalomyelitis (EAE). LPA1 expression was analyzed in EAE mice and MS patient immune cells. The effect of LPA and LPA1 on macrophage activation was studied in human monocyte-derived macrophages. We show that lack of LPA1 activity induces milder clinical EAE course and that Lpar1 expression in peripheral blood mononuclear cells (PBMC) correlates with onset of relapses and severity in EAE. We see the same over-expression in PBMC from MS patients during relapse compared with progressive forms of the disease and in stimulated monocyte-derived macrophages. LPA induced a proinflammatory-like response in macrophages through LPA1, providing a plausible way in which LPA and LPA1 dysregulation can lead to the inflammation in MS. These data show a new mechanism of LPA signaling in the MS pathogenesis, prompting further research into its use as a therapeutic target biomarker.


Assuntos
Lisofosfolipídeos/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Esclerose Múltipla/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Adolescente , Adulto , Idoso , Animais , Polaridade Celular , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/patologia , PPAR gama/metabolismo , Fenótipo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Recidiva , Adulto Jovem
3.
Brain ; 140(4): 967-980, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334918

RESUMO

One major challenge in multiple sclerosis is to understand the cellular and molecular mechanisms leading to disease severity progression. The recently demonstrated correlation between disease severity and remyelination emphasizes the importance of identifying factors leading to a favourable outcome. Why remyelination fails or succeeds in multiple sclerosis patients remains largely unknown, mainly because remyelination has never been studied within a humanized pathological context that would recapitulate major events in plaque formation such as infiltration of inflammatory cells. Therefore, we developed a new paradigm by grafting healthy donor or multiple sclerosis patient lymphocytes in the demyelinated lesion of nude mice spinal cord. We show that lymphocytes play a major role in remyelination whose efficacy is significantly decreased in mice grafted with multiple sclerosis lymphocytes compared to those grafted with healthy donors lymphocytes. Mechanistically, we demonstrated in vitro that lymphocyte-derived mediators influenced differentiation of oligodendrocyte precursor cells through a crosstalk with microglial cells. Among mice grafted with lymphocytes from different patients, we observed diverse remyelination patterns reproducing for the first time the heterogeneity observed in multiple sclerosis patients. Comparing lymphocyte secretory profile from patients exhibiting high and low remyelination ability, we identified novel molecules involved in oligodendrocyte precursor cell differentiation and validated CCL19 as a target to improve remyelination. Specifically, exogenous CCL19 abolished oligodendrocyte precursor cell differentiation observed in patients with high remyelination pattern. Multiple sclerosis lymphocytes exhibit intrinsic capacities to coordinate myelin repair and further investigation on patients with high remyelination capacities will provide new pro-regenerative strategies.


Assuntos
Imunidade Adaptativa/fisiologia , Doenças Desmielinizantes/imunologia , Bainha de Mielina/imunologia , Adolescente , Adulto , Idoso , Animais , Transplante de Células , Quimiocina CCL19/imunologia , Feminino , Humanos , Linfócitos/imunologia , Lisofosfatidilcolinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Células-Tronco Neurais/imunologia , Oligodendroglia/imunologia , Oligodendroglia/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...